'Washout' during surgery for prevention of surgical site infection

What is the aim of this review?

The aim of this review was to find out whether intracavity lavage and wound irrigation (washing out a wound during surgery) can help to prevent surgical site infection (SSI). Researchers from Cochrane collected and analysed all relevant studies (randomised controlled trials) to answer this question and found 59 relevant studies.

Key messages

The certainty of all the evidence we gathered on the effect of washing out wounds on SSIs was low or very low. This was due to problems with how results were reported, some small sample sizes and concern that not all relevant evidence was published. This means that the true effects of treatments may be substantially different from our results. Washing out surgical wounds may make no clear difference to SSI rates compared with not washing out. Using antibacterial solutions to wash out wounds may reduce infection rates compared with non-antibacterial products. Pumping the washing solution into the wound may reduce infections compared with other methods of washing out. Side effects were not well reported.

What was studied in the review?

Infections can often develop in wounds following surgery. This can prevent the wound from healing and can lead to infection spreading through the body. People with SSIs spend longer in hospital and are more likely to need a repeat operation. Techniques used to reduce the risk of infection include intracavity lavage or wound irrigation (washing out the wound during surgery using water or medicated solutions). We wanted to find out if this reduced SSI rates, and improved wound healing. We also wanted to find out about serious consequences such as severe infections that cannot be treated with antibiotics, abscesses, and lengthy hospital stays.

What are the main results of the review?

We found 59 studies involving 14,738 participants (both adults and children). Some studies enrolled only women because of the type of surgery (e.g. caesarean sections). The studies compared washing out wounds with no treatment, antibacterial and non-antibacterial washing solutions, and different methods of washing. Follow-up times ranged from a few days to several months but most were between two and eight weeks. Most studies did not state how they were funded, but when funding was reported it was mostly non-commercial.

Twenty studies involving 7192 participants compared washing out with no washing. The results showed no clear difference in SSI rates (low-certainty evidence). Antibacterial washing solutions may reduce infection rates compared with non-antibacterial solutions (low-certainty evidence from 36 trials involving 6163 participants). Two studies involving 484 participants compared standard washing methods (pouring using a jug or a syringe) with pumping or pulsing the washing solution. There may be fewer SSIs when the solution is pumped into the wound (low-certainty evidence). There may be fewer SSIs when a solution of povidone iodine is used compared with an alternative antiseptic (superoxidised water, Dermacyn) (low-certainty evidence from 1 trial with 190 participants). The results for all other comparisons showed no clear differences or were very uncertain. Wound reopening (dehiscence), infections, which are hard to treat with antibiotics, and deaths were not widely reported. Washing out wounds may not affect the length of time people stay in hospital (low- or moderate-certainty evidence).

How up to date is this review?

We searched for studies that had been published up to February 2017.

Authors' conclusions: 

The evidence base for intracavity lavage and wound irrigation is generally of low certainty. Therefore where we identified a possible difference in the incidence of SSI (in comparisons of antibacterial and non-antibacterial interventions, and pulsatile versus standard methods) these should be considered in the context of uncertainty, particularly given the possibility of publication bias for the comparison of antibacterial and non-antibacterial interventions. Clinicians should also consider whether the evidence is relevant to the surgical populations under consideration, the varying reporting of other prophylactic antibiotics, and concerns about antibiotic resistance.

We did not identify any trials that compared an antibiotic with an antiseptic. This gap in the direct evidence base may merit further investigation, potentially using network meta-analysis; to inform the direction of new primary research. Any new trial should be adequately powered to detect a difference in SSIs in eligible participants, should use robust research methodology to reduce the risks of bias and internationally recognised criteria for diagnosis of SSI, and should have adequate duration and follow-up.

Read the full abstract...
Background: 

Surgical site infections (SSIs) are wound infections that occur after an operative procedure. A preventable complication, they are costly and associated with poorer patient outcomes, increased mortality, morbidity and reoperation rates. Surgical wound irrigation is an intraoperative technique, which may reduce the rate of SSIs through removal of dead or damaged tissue, metabolic waste, and wound exudate. Irrigation can be undertaken prior to wound closure or postoperatively. Intracavity lavage is a similar technique used in operations that expose a bodily cavity; such as procedures on the abdominal cavity and during joint replacement surgery.

Objectives: 

To assess the effects of wound irrigation and intracavity lavage on the prevention of surgical site infection (SSI).

Search strategy: 

In February 2017 we searched the Cochrane Wounds Specialised Register; the Cochrane Central Register of Controlled Trials (CENTRAL); Ovid MEDLINE; Ovid Embase and EBSCO CINAHL Plus. We also searched three clinical trials registries and references of included studies and relevant systematic reviews. There were no restrictions on language, date of publication or study setting.

Selection criteria: 

We included all randomised controlled trials (RCTs) of participants undergoing surgical procedures in which the use of a particular type of intraoperative washout (irrigation or lavage) was the only systematic difference between groups, and in which wounds underwent primary closure. The primary outcomes were SSI and wound dehiscence. Secondary outcomes were mortality, use of systemic antibiotics, antibiotic resistance, adverse events, re-intervention, length of hospital stay, and readmissions.

Data collection and analysis: 

Two review authors independently assessed studies for inclusion at each stage. Two review authors also undertook data extraction, assessment of risk of bias and GRADE assessment. We calculated risk ratios or differences in means with 95% confidence intervals where possible.

Main results: 

We included 59 RCTs with 14,738 participants. Studies assessed comparisons between irrigation and no irrigation, between antibacterial and non-antibacterial irrigation, between different antibiotics, different antiseptics or different non-antibacterial agents, or between different methods of irrigation delivery. No studies compared antiseptic with antibiotic irrigation.

Surgical site infection

Irrigation compared with no irrigation (20 studies; 7192 participants): there is no clear difference in risk of SSI between irrigation and no irrigation (RR 0.87, 95% CI 0.68 to 1.11; I2 = 28%; 14 studies, 6106 participants). This would represent an absolute difference of 13 fewer SSIs per 1000 people treated with irrigation compared with no irrigation; the 95% CI spanned from 31 fewer to 10 more SSIs. This was low-certainty evidence downgraded for risk of bias and imprecision.

Antibacterial irrigation compared with non-antibacterial irrigation (36 studies, 6163 participants): there may be a lower incidence of SSI in participants treated with antibacterial irrigation compared with non-antibacterial irrigation (RR 0.57, 95% CI 0.44 to 0.75; I2 = 53%; 30 studies, 5141 participants). This would represent an absolute difference of 60 fewer SSIs per 1000 people treated with antibacterial irrigation than with non-antibacterial (95% CI 35 fewer to 78 fewer). This was low-certainty evidence downgraded for risk of bias and suspected publication bias.

Comparison of irrigation of two agents of the same class (10 studies; 2118 participants): there may be a higher incidence of SSI in participants treated with povidone iodine compared with superoxidised water (Dermacyn) (RR 2.80, 95% CI 1.05 to 7.47; low-certainty evidence from one study, 190 participants). This would represent an absolute difference of 95 more SSIs per 1000 people treated with povidone iodine than with superoxidised water (95% CI 3 more to 341 more). All other comparisons found low- or very low-certainty evidence of no clear difference between groups.

Comparison of two irrigation techniques: two studies compared standard (non-pulsed) methods with pulsatile methods. There may, on average, be fewer SSIs in participants treated with pulsatile methods compared with standard methods (RR 0.34, 95% CI 0.19 to 0.62; I2 = 0%; two studies, 484 participants). This would represent an absolute difference of 109 fewer SSIs occurring per 1000 with pulsatile irrigation compared with standard (95% CI 62 fewer to 134 fewer). This was low-certainty evidence downgraded twice for risks of bias across multiple domains.

Wound dehiscence

Few studies reported wound dehiscence. No comparison had evidence for a difference between intervention groups. This included comparisons between irrigation and no irrigation (one study, low-certainty evidence); antibacterial and non-antibacterial irrigation (three studies, very low-certainty evidence) and pulsatile and standard irrigation (one study, low-certainty evidence).

Secondary outcomes

Few studies reported outcomes such as use of systemic antibiotics and antibiotic resistance and they were poorly and incompletely reported. There was limited reporting of mortality; this may have been partially due to failure to specify zero events in participants at low risk of death. Adverse event reporting was variable and often limited to individual event types. The evidence for the impact of interventions on length of hospital stay was low or moderate certainty; where differences were seen they were too small to be clinically important.